
ISRAEL JOURNAL OF MATHEMATICS 165 (2008), 67–91

DOI: 10.1007/s11856-008-1004-3

THE ORBIT METHOD FOR PROFINITE GROUPS AND

A p-ADIC ANALOGUE OF BROWN’S THEOREM

BY

Mitya Boyarchenko∗

Department of Mathematics, University of Chicago,

Chicago, IL, 60637, USA

e-mail: mitya@math.uchicago.edu

AND

Maria Sabitova

Department of Mathematics,

University of Illinois at Urbana-Champaign,

Urbana, IL 61801, USA

e-mail: sabitova@math.uiuc.edu

ABSTRACT

We develop an approach to the character theory of certain classes of finite

and profinite groups based on the construction of a Lie algebra associated

to such a group, but without making use of the notion of a polarization

which is central to the classical orbit method. Instead, Kirillov’s char-

acter formula becomes the fundamental object of study. Our results are

then used to produce an alternate proof of the orbit method classifica-

tion of complex irreducible representations of p-groups of nilpotence class

< p, where p is a prime, and of continuous complex irreducible representa-

tions of uniformly powerful pro-p-groups (with a certain modification for

p = 2). As a main application, we give a quick and transparent proof of

the p-adic analogue of Brown’s theorem, stating that for a nilpotent Lie

group over Qp the Fell topology on the set of isomorphism classes of its

irreducible representations coincides with the quotient topology on the set

of its coadjoint orbits.
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Introduction

The orbit method was originally discovered in the late 1950s – early 1960s

by Alexandre Kirillov [Ki62] for connected and simply connected nilpotent Lie

groups. If G is such a group and g is its Lie algebra, this method provides an

explicit bijection between the unitary dual Ĝ of G, i.e., the set of equivalence

classes of unitary irreducible representations of G, and the set g∗/G of orbits of

the induced action of G on g∗ (called coadjoint orbits). A major ingredient of

this theory is Kirillov’s character formula. Roughly speaking, it states that

if Ω ⊂ g∗ is a coadjoint orbit and ρΩ ∈ Ĝ is the corresponding representation,

then the character of ρΩ, viewed as a generalized function on G, is the pullback

via the logarithm map log : G −→ g of the inverse Fourier transform of a

suitably normalized G-invariant measure on g∗ supported on Ω.

Since then Kirillov’s approach has been extended to many other classes of

groups: nilpotent p-adic Lie groups [Mo65], p-groups of nilpotence class < p

(beginning with [Ka77]), and uniformly powerful (or uniform, for short) pro-p-

groups [Ho77, JZ06], to name the ones that will appear in this paper1. Each such

extension usually involves two modifications: one has to work with a correct

analogue of a “unitary irreducible representation” in each context, and one has

to find an appropriate version of the Lie algebra construction. For example, if

G is a p-adic Lie group, its Lie algebra is defined as usual, but Ĝ has to be

understood as the set of isomorphism classes of irreducible complex “algebraic”

(or, in a different terminology, “smooth”) representations of G. On the other

hand, if G is a p-group of nilpotence class < p (respectively, a uniform pro-

p-group), then Ĝ has to be understood as the set of isomorphism classes of

continuous complex irreducible representations of G, and the usual Lie algebra

construction is replaced by a construction of Lazard which produces a finite Lie

ring [Khu98] (respectively, a uniform Lie algebra over Zp [DDMS]) associated

to G.

After these modifications have been made, the theory follows the pattern of

Kirillov’s original approach (modulo various technical difficulties). Namely, in

each case the underlying additive group of g has a natural topology, and g∗ can

1 The orbit method can also be applied, with suitable changes, to solvable Lie groups;

moreover, its philosophy extends essentially to all Lie groups, and even beyond them.

However, these generalizations lie in a different direction from the ones considered in this

article.
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be identified with the Pontryagin dual of g. Given an element f ∈ g∗, one

looks for a polarization of g at f , i.e., a Lie subalgebra h ⊆ g which has the

property that f is trivial on [h, h], and which is maximal among all additive

subgroups of g with this property. Polarizations always exist, and if H is the

subgroup of G corresponding to a polarization h, then f induces a 1-dimensional

character χf of H and we can form the induced representation ρf = IndGH χf .

The theorem is that this representation is always irreducible; its isomorphism

class depends only on the G-orbit of f ; and, finally, every ρ ∈ Ĝ arises in this

way from a unique G-orbit Ω ⊂ g∗. This description of ρf is then used to prove

Kirillov’s character formula (or a suitable analogue thereof).

In reality, one needs to be more careful with uniformly powerful pro-p-groups

when p = 2. The problem that arises here is that an element f ∈ g∗ which

is trivial on [g, g] may not induce a 1-dimensional character of G. (We thank

A. Jaikin-Zapirain for explaining this to us.) Thus in this case the approach to

the orbit method has to be somewhat modified (cf. [JZ06]); however, the basic

idea remains the same.

An important feature of all four situations mentioned above is that both Ĝ

and g∗/G are equipped with a natural topology. The topology on the former

is the so-called Fell topology (see §3.2). The topology on the latter is the

quotient of the standard (compact-open) topology on g∗. Moreover, in all four

cases the orbit method bijection turns out to be a homeomorphism. This is a

non-trivial result which has useful applications. For an interesting application

in the p-adic setting we refer the reader to [GK92]. In the setting of real Lie

groups this statement was originally conjectured by Kirillov, who also proved

that the bijection g∗/G −→ Ĝ is continuous. The proof that this bijection is

also open is substantially more difficult, and was given by Ian Brown about 10

years later in [Br73]. While it may be possible to adapt Brown’s argument to

a p-adic nilpotent Lie group G (to the best of our knowledge, this has never

been done), we present in Section 3 a completely different proof (following a

suggestion of V. Drinfeld) which is based on the fact that G is an increasing

union of a sequence of open uniform pro-p-subgroups (see Lemma 3.2); this is

the main new result of our paper. Our proof seems to be much shorter and more

transparent than Brown’s proof, and we hope that it is easier to understand.

On the other hand, it is not clear to us whether this approach has an analogue

for real Lie groups.
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Another new result in our paper is a theorem we call the “abstract orbit

method”. It arose from an approach to the orbit method for finite nilpotent

groups (of sufficiently small nilpotence class) that we also learned from V. Drin-

feld. It was natural to try to see if this approach can be extended to uniform

pro-p-groups, and, more generally, to find the minimal set of assumptions under

which this method can be used. The answer is given in Section 1, and in Section

2 we show that our “abstract orbit method” can indeed be used to classify (con-

tinuous) complex irreducible representations of p-groups of nilpotence class < p

and of uniform pro-p-groups (with a certain modification for p = 2). The main

difference with the classical approach is that we never mention polarizations.

In particular, in the abstract setting one does not even need a Lie bracket on

g. Instead, we prove directly that a suitable analogue of Kirillov’s character

formula produces a collection of functions on the group, parameterized by the

coadjoint orbits, which turn out to be precisely the irreducible characters of the

group.

This approach has its advantages and disadvantages. The main disadvan-

tage is that, unlike the classical one, our method of constructing irreducible

characters cannot be “upgraded” to yield a construction of irreducible repre-

sentations. On the other hand, it appears to be more straightforward, since

one always works directly with irreducible characters, whereas the motivation

behind the notion of a polarization comes from areas of mathematics outside of

representation theory. However, a much more significant advantage is that the

method explained in our paper has an analogue in the geometric representation

theory for unipotent groups, whereas the classical method does not have such

an analogue (at least not in any obvious sense), for, in the geometric setting

polarizations cease to exist in general. A proper discussion of this remark is

beyond the scope of our paper, and instead we refer the reader to [DB06].

Acknowledgements. This paper owes its existence to lectures of Vladimir

Drinfeld and our private discussions with him. In particular, he explained to

us the approach to the orbit method for finite nilpotent groups which gave rise

to our “abstract orbit method” theorem. He also motivated our main result by

asking if an analogue of Brown’s theorem for p-adic nilpotent Lie groups can be

proved using the orbit method for uniformly powerful pro-p-groups.
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1. Abstract orbit method

1.1. The statement. For every profinite group Π we denote by µΠ the unique

Haar measure on Π such that µΠ(Π) = 1. We define the convolution of two

complex-valued L2-functions f1 and f2 on Π by the formula

(f1 ∗ f2)(γ) =

∫

G

f1(h)f2(h
−1γ) dµΠ(h), γ ∈ Π.

We write Fun(Π) for the space of complex-valued functions on Π that are bi-

invariant with respect to a sufficiently small open subgroup of Π. It is clear

that Fun(Π) ⊆ L2(Π) is closed under convolution, which makes Fun(Π) an

associative C-algebra (it is unital if and only if Π is finite, and commutative if

and only if Π is commutative). The subspace Fun(Π)Π ⊆ Fun(Π) of Π-invariant

functions, where Π acts on itself by conjugation, is also closed under convolution

(see Lemma 1.3), and in fact coincides with the center of Fun(Π); in particular,

Fun(Π)Π is always commutative.

Theorem 1.1 (Abstract orbit method): Let G be a profinite group, and

suppose that there exist an abelian profinite group g and a homeomorphism

exp : g→ G such that the following two conditions hold:

(i) for each g ∈ G, the map Ad g : g→ g given by x 7→ log(g exp(x)g−1) is a

group automorphism, where we write log for exp−1; and

(ii) the pullback map exp∗ : Fun(G)G
≃−→ Fun(g)G commutes with convolu-

tion.

Then each G-orbit Ω ⊂ g∗ is finite, and there is a bijection between g∗/G and

Ĝ such that the irreducible character χ of G corresponding to an orbit Ω ⊂ g∗

is given by

(1.1) χ(ex) = |Ω|−1/2
∑

f∈Ω

f(x).
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Here, as in the introduction, g∗ denotes the Pontryagin dual of g, which, since

g is compact, coincides with the group of continuous homomorphisms of g into

C×, and has the discrete topology. The action of G on g∗ is induced by its

action on g via Ad. Note that every finite group can be viewed as a profinite

one (with the discrete topology), so our definitions and the theorem are valid

for finite G and g as well.

Remarks 1.2: (1) In practice, if one wants to apply Theorem 1.1 to a specific

group G, the main difficulty lies in verifying assumption (ii), as we will see

in Section 2.

(2) As we have already noted in the introduction, one should observe that

g is not required to have a Lie bracket in the statement of the theorem.

Unfortunately, we do not know of any example where the assumption of

the theorem is satisfied for some profinite group G, but g does not arise

from some sort of a Lie algebra construction. It would be very interesting

to find such an example.

(3) Formula (1.1) implies that |Ω|1/2 = χ(1) is an integer for every Ω ∈ g∗/G,

i.e., the order of every coadjoint orbit is a full square. In the generality of

the theorem, this is the only proof of this fact known to us.

1.2. Auxiliary results. In this section we fix G, g and exp satisfying the

assumptions of the theorem. To simplify notation, we write XG = Fun(G)G.

Thus XG is the set of all complex-valued class functions f on G such that

there exists a normal open subgroup K of G (depending on f) satisfying

f(gk) = f(kg) = f(g), for all g ∈ G, for all k ∈ K.

Similarly, we will writeXg = Fun(g)G, and we write gxg−1 in place of (Ad g)(x).

Lemma 1.3: We have XG ⊆ L2(G), and XG is an algebra with respect to

convolution. Also, if χ is the character of a continuous complex irreducible

representation ρ of G, then (dim ρ) ·χ is an indecomposable idempotent of XG,

and every indecomposable idempotent of XG has this form.

Let us recall that an indecomposable idempotent of a commutative ring

A is a non-zero idempotent e ∈ A (i.e., e 6= 0 and e2 = e) which cannot be

written as e = e1 + e2 for non-zero idempotents e1, e2 ∈ A satisfying e1 · e2 = 0.
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Proof. For any f1, f2 ∈ XG let K be a normal open subgroup of G such that

both f1 and f2 are constant on the cosets of K in G. (Clearly, such a K

exists.) Then f1 and f2 can be considered as class functions on G/K (denoted

respectively as f̄1 and f̄2), and for each g ∈ G, we have

(f1 ∗ f2)(g) = (f̄1 ∗ f̄2)(ḡ),

where ḡ denotes the image of g in G/K. On the other hand, it is well-known

that every complex irreducible representation of G is finite dimensional (because

G is compact), and hence has finite kernel (because G is totally disconnected).

This implies that it is enough to prove the lemma for a finite group G.

Let G be finite. Then clearly the set Fun(G) of all functions on G is an

algebra with convolution as multiplication and XG ⊆ Fun(G) is the set of all

class functions on G. Define the map ψ : C[G]→ Fun(G) via

ψ(g)(h) =

{
0, g 6= h

|G|, g = h
g, h ∈ G,

and for any x =
∑
g∈G ngg (ng ∈ C),

ψ(x) =
∑

g∈G
ngψ(g),

where ng denotes the complex conjugate of ng. It is easy to see that ψ is a

ring isomorphism and that the inverse image of XG in C[G] is center ZG of

C[G]. This implies that XG ⊆ Fun(G) is a subalgebra and that e ∈ ZG is an

indecomposable idempotent if and only if ψ(e) is one.

Recall that there is a one-to-one correspondence between indecomposable

idempotents of ZG and irreducible representations of G, such that for every in-

decomposable idempotent e ∈ ZG, the corresponding irreducible representation

ρe of G has the property that the left regular representation of G on e ·C[G] is

isomorphic to a multiple of ρe. Thus, it is enough to show that if e ∈ ZG is an

indecomposable idempotent corresponding to an irreducible representation ρe of

G, then (dim ρe)
−1 · ψ(e) is the character of ρe. Moreover, since ψ(e) is a class

function, it is enough to show that for any two indecomposable idempotents

e, ẽ ∈ ZG we have

(1.2) 〈ψ(e), χẽ〉 =
{

0, e 6= ẽ

dim ρe, e = ẽ
,



74 M. BOYARCHENKO AND M. SABITOVA Isr. J. Math.

where 〈· , ·〉 is the inner product on L2(G) = Fun(G) and χẽ is the character of

ρẽ.

Let e =
∑

g∈G ngg, ng ∈ C. Then

(1.3) 〈ψ(e), χẽ〉 =
1

|G| ·
∑

g∈G

ψ(e)(g) · χẽ(g) =
∑

g∈G

ngχẽ(g) = χẽ(e),

where by extending χẽ by linearity we consider χẽ as a function on C[G]. Now

let Vẽ be a representation space for ρẽ. Then, as was mentioned above, for some

n ∈ N there exists a C[G]-module isomorphism

ẽ ·C[G] ∼= V nẽ ,

hence

χẽ(e) =

{
0, e 6= ẽ

dim ρe, e = ẽ

which together with (1.3) gives (1.2).

Lemma 1.4: Every G-orbit in g∗ is finite.

Proof. Fix f ∈ g∗. Since g is profinite and f : g→ C× is continuous, it follows

that f has finite image, hence Ker f is open. Thus there exists an open normal

subgroup K ⊆ G such that log(K) ⊆ Ker f . Hence every element in the G-orbit

of f vanishes on log(K). But the set of elements of g∗ that vanish on log(K) is

finite, since there exists an open additive subgroup a ⊆ g such that a ⊆ log(K),

and (g/a)∗ is finite.

Lemma 1.5: Write µ = µg. For each Ω ∈ g∗/G define the following function

on g

χΩ(x) =
1

|Ω|1/2
∑

f∈Ω

f(x), x ∈ g.

Then χΩ ∈ Xg, and for any two Ω,Ω′ ∈ g∗/G we have

〈χΩ, χΩ′〉 =

{
1, Ω = Ω′

0, Ω 6= Ω′

where 〈χΩ, χΩ′〉 =
∫

g
χΩ(x)χΩ′ (x)dµ(x).

Proof. It is clear that χΩ ∈ Xg. Moreover, the functions f ∈ g∗ are known to

be orthonormal with respect to the inner product 〈· , ·〉. Indeed, this is simply

the orthogonality of irreducible characters for the compact abelian group g.
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This implies in particular that the L2 norm of the function
∑

f∈Ω f is equal

to |Ω|1/2. Since distinct orbits are disjoint, the statement of the lemma follows

immediately.

1.3. Proof of Theorem 1.1. Let us write L2(g∗) for the space of square-

summable functions on g∗ (where g∗ is equipped with the counting measure).

Recall that the Fourier transform provides an isomorphism

F : L2(g)
≃−→ L2(g∗),

(Ff)(φ) =

∫

g

f(h)φ(h)dµ(h), f ∈ L2(g), φ ∈ g∗,

which intertwines convolution with pointwise multiplication (whenever the two

operations are defined). Let χΩ be the functions on g defined in Lemma 1.5.

Given Ω ∈ g∗/G, we now show that F(|Ω|1/2 ·χΩ) is the characteristic function

of Ω. Let Ω′ ∈ g∗/G be a second orbit (possibly the same as Ω), and let φ ∈ Ω′.

Then we have

F(χΩ)(φ) =

∫

g

χΩ(x)φ(x)dµ(x).

This implies that

〈χΩ, χΩ′〉 =

∫

g

χΩ(x)χΩ′ (x)dµ(x)

=
1

|Ω′|1/2|Gφ|
∑

g∈G

∫

g

χΩ(x)φ(g−1xg)dµ(x)

=
|G|

|Ω′|1/2|Gφ|

∫

g

χΩ(x)φ(x)dµ(x) = |Ω′|1/2 · F(χΩ)(φ).

Thus, by Lemma 1.5, F(|Ω|1/2 · χΩ) is the characteristic function of Ω, and is

therefore an indecomposable idempotent in the algebra of G-invariant functions

on g∗ with respect to pointwise multiplication. Hence |Ω|1/2 · χΩ is an inde-

composable idempotent of the algebra XG (with respect to convolution), which

together with Lemma 1.3 proves the correspondence between irreducible repre-

sentations of G and coadjoint orbits of g∗. Furthermore, if χ is the irreducible

character of G corresponding to Ω, then

|Ω|1/2 · χΩ = dim ρ · exp∗(χ)

by Lemma 1.3, hence by evaluating these functions at 0 we see that |Ω|1/2 =

dim ρ, and consequently χΩ = exp∗(χ). This completes the proof of Theorem

1.1.
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2. Application to (pro-)p-groups

2.1. Notation and terminology. From now on, p will denote a fixed prime

number. Even though there exists a group-theoretic definition of a uniformly

powerful (or, for brevity, “uniform”) pro-p-group [DDMS], for our purposes

it is more convenient to use the Lie-theoretic definition, which is also more

transparent. We define a uniform Lie algebra to be a Lie algebra over the

ring Zp of p-adic integers which is free of finite rank as a Zp-module and satisfies

[g, g] ⊆ p ·g (respectively, [g, g] ⊆ 4 ·g when p = 2). Given a uniform Lie algebra

g, we equip it with the topology induced by the standard topology on Zp, and we

define a topological group G := exp g to be the underlying topological space of

g equipped with a group operation given by the Campbell-Hausdorff series

(2.1) CH(x, y) = log
(
exp(x) exp(y)

)
=

∞∑

i=1

CHi(x, y).

Remarks 2.1: (1) A priori, CH(x, y) is viewed as an element of Q〈〈x, y〉〉, the

algebra of formal non-commutative power series in the variables x and y

with coefficients in Q, and CHi(x, y) denotes its homogeneous component

of (total) degree i. However, it is well-known that CH(x, y) is, in fact, a

formal Lie series, which means that each term CHi(x, y) lies in the Lie

subalgebra of Q〈〈x, y〉〉 generated by x and y.

(2) Since the coefficients of CH(x, y) involve positive powers of p in the de-

nominator, it is not immediately obvious that CH(x, y) can even be eval-

uated in a uniform Lie algebra g term-by-term. However, Michel Lazard

proved, cf. [DDMS], that the condition imposed on g guarantees that for

each x, y ∈ g, we have CHi(x, y) ∈ g ⊆ Qp ⊗Zp
g, and, in addition, the

series CH(x, y) converges uniformly on g and makes it a topological group.

This result justifies our construction of G = exp g.

Definition 2.2: A uniform pro-p-group is a profinite group G which is iso-

morphic to exp g for some uniform Lie algebra g. If G ∼= exp g is such a group,

we will fix an isomorphism exp g
≃−→ G and denote the underlying map of sets

by exp : g −→ G. By abuse of notation, we will also write G = exp g and

g = Lie(G).

Suppose now that g is a finite Lie ring (i.e., a Lie algebra over Z) whose order

is a power of p, and such that g is nilpotent of nilpotence class < p. (This
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means that any iterated commutator of length ≥ p vanishes in g.) In this case

it is rather easy to check that the Lie series CH(x, y) can be evaluated in g

term-by-term, and makes g a p-group (there is no issue of convergence of CH

in this setting). Again, we denote this p-group by exp g. Michel Lazard proved,

cf. [Khu98], that every p-group G of nilpotence class < p arises in this way from

a unique g. In this situation we will also write g = Lie(G), and the underlying

map of a fixed isomorphism exp g
≃−→ G will be denoted by exp : g −→ G, just

as for uniform pro-p-groups. We will write log = exp−1.

2.2. Auxiliary results on formal Lie series. Throughout the rest of the

section G will denote a p-group of nilpotence class < p or a uniform pro-p-

group, and g = Lie(G) its Lie algebra. In both cases we have the exponential

map exp : g −→ G, which is a homeomorphism, and assumption (i) of The-

orem 1.1 is satisfied in this situation. In fact, in both cases it is known that

Lazard’s construction is functorial; in particular, a continuous set-theoretic bi-

jection g −→ g is a Lie algebra automorphism if and only if it is an automor-

phism of the group exp g. Another fact that will often be used implicitly in

what follows is that if x ∈ g and adx : g −→ g denotes the additive map

y 7→ [x, y], then ead x = Ad(ex) as automorphisms of g. In order to classify the

continuous complex irreducible representations of G we would like to show that

assumption (ii) of Theorem 1.1 holds in this setting as well. Unfortunately, as

A. Jaikin-Zapirain pointed out to us, this is sometimes false when p = 2 and G

is a uniform pro-2-group; thus this case needs to be dealt with separately (see

§2.4).

Ignoring this issue for the moment, let us note that the main problem with

verifying assumption (ii) arises from the fact that the convolution of functions on

g is defined using the addition in g, while the convolution of functions on expg

is defined using the multiplication in exp g, or, equivalently, the Campbell–

Hausdorff operation CH : g × g −→ g. This problem is dealt with in a

very natural way, shown to us by V. Drinfeld: we prove that one can write

CH(x, y) = x̃ + ỹ, where x̃ (respectively, ỹ) is a certain Lie series in the vari-

ables x, y which is conjugate to x (respectively, to y). This formula implies

that the two convolutions of conjugation-invariant functions on g, defined using

addition and the operation CH , are in fact identical, which is the content of

condition (ii) of Theorem 1.1. We should mention that in practice, however,
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the realization of this idea for uniform pro-p-groups involves certain technical

difficulties.

We now turn to precise statements. Let E be a finite extension of Qp, let

vp denote the valuation on E normalized by vp(p) = 1, and let K ⊆ E be a

subfield.

Lemma 2.3: Let H(x, y) =
∑∞

n=1Hn(x, y) ∈ K〈〈x, y〉〉 be a formal Lie se-

ries, where Hn(x, y) is homogeneous of degree n, such that H1(x, y) = x + y

and vp(Hn) ≥ −n−2
p−1 for all n ≥ 2. Then there exist formal Lie series φ =

φ(x, y), ψ = ψ(x, y) ∈ K〈〈x, y〉〉 such that

(2.2) H(x, y) = eadφ(x,y)(x) + eadψ(x,y)(y),

and if φn, ψn denote the degree n homogeneous components of φ, ψ, respectively,

then vp(φn) ≥ −n−1
p−1 and vp(ψn) ≥ −n−1

p−1 for all n ≥ 1.

Here, by abuse of notation, we write vp(Hn)
(
respectively, vp(φn) and vp(ψn)

)

for the minimum among the valuations of all coefficients of Hn (respectively,

φn and ψn).

Proof. It is easy to see that one can construct the series φ and ψ inductively.

Namely, for each n ≥ 0 let us compare the homogeneous components of degree

n + 1 on both sides of (2.2). For n = 0 there is nothing to check, thanks to

the assumption that H1(x, y) = x+ y. For each n ≥ 1, we may assume that all

φj , ψj with j < n have already been found and satisfy vp(φj), vp(ψj) ≥ − j−1
p−1 .

In order to find φn and ψn we have to solve an equation of the form

(2.3) [φn, x] + [ψn, y] + (something known) = Hn+1(x, y),

where “something known” is a sum of expressions of the form

(2.4)
1

k!
· [φj1 , [φj2 , [. . . [φjk , x] . . . ]]] or

1

k!
· [ψj1 , [ψj2 , [. . . [ψjk , y] . . . ]]]

with 2 ≤ k ≤ n and j1 +j2 + · · ·+jk = n. It is well-known that vp(k!) ≤ k−1
p−1 for

all k ≥ 1 (with equality if k is a power of p), which implies that the valuation

of each of the expressions in (2.4) is at least

−k − 1

p− 1
− j1 − 1

p− 1
− · · · − jk − 1

p− 1
= −k − 1 + j1 + · · ·+ jk − k

p− 1
= −n− 1

p− 1
.

In addition, we have vp(Hn+1) ≥ −n−1
p−1 by assumption. This immediately

implies that there exist homogeneous Lie polynomials φn = φn(x, y), ψn =
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ψn(x, y) of degree n which solve (2.3) and satisfy vp(φn), vp(ψn) ≥ −n−1
p−1 ,

completing the induction.

This result suffices to prove the orbit method correspondence when p ≥ 5.

To treat the case p = 3 we need the following variation

Lemma 2.4: In the situation of Lemma 2.3, assume that p = 3 and that

v3(Hn) ≥ −6n− 10

7
for all n ≥ 2.

Then the conclusion of Lemma 2.3 holds with v3(φn), v3(ψn) ≥ − 6n−4
7 for

n ≥ 1.

Proof. We follow the proof of Lemma 2.3 almost word-for-word; the only step

that needs to be changed is the estimation of the valuations of the coefficients

of the expressions (2.4). We have v3(k!) ≤ (k − 1)/2, and therefore, by the

induction assumption, each of the valuations in question is at least

−k − 1

2
− 6j1 − 4

7
− · · · − 6jk − 4

7
= −k − 1

2
− 6n− 4k

7
= −6n− 4

7
+
k − 1

14
.

Since k − 1 > 0, this finishes the induction in the same way as before.

2.3. The orbit method when p ≥ 3. In this subsection we treat the orbit

method for a group G which is either a p-group of nilpotence class < p or a

uniform pro-p-group with p ≥ 3. Since the orbit method obviously works for

commutative 2-groups, there is no harm in assuming that p ≥ 3 for finite G as

well.

Proposition 2.5: Assume that p ≥ 3, let G be as above, and let g = Lie(G).

Then there exist formal Lie series φ(x, y), ψ(x, y) ∈ Q〈〈x, y〉〉 which can be

evaluated term-by-term in g, converge uniformly for x, y ∈ g when g is uniform,

and satisfy

(2.5) log
(
exp(x) exp(y)

)
= eadφ(x,y)(x) + eadψ(x,y)(y) for all x, y ∈ g.

Proof. Let us recall the Campbell–Hausdorff seriesCH(x, y) ∈ Q〈〈x, y〉〉 defined

by (2.1). The key fact about the coefficients of CH(x, y) that we will need is

the following result (see [DDMS], p. 123): for every prime p,

(2.6) vp(CHn) ≥ −
n− 1

p− 1
for all n ≥ 1.
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Suppose first that G is finite, and let H(x, y) ∈ Q〈〈x, y〉〉 denote the Lie polyno-

mial obtained by discarding all homogeneous components of CH(x, y) of degree

≥ p. Then G is isomorphic to g equipped with the operation given by H . Since

vp(Hn) ∈ Z, it follows from (2.6) that all coefficients of H lie in Zp ∩ Q. Thus

the assumption of Lemma 2.3 is satisfied with K = Q. Let φ′, ψ′ denote for-

mal Lie series satisfying the conclusion of the lemma, and let φ, ψ be the Lie

polynomials obtained from φ′ and ψ′, respectively, by discarding all homoge-

neous components of degrees ≥ p − 1. (Note a slight change of our notation!)

Since the valuation of each coefficient of φ and ψ must be an integer, and since

−n−1
p−1 > −1 for 1 ≤ n ≤ p − 2, we see that the coefficients of φ and ψ lie in

Zp∩Q. Thus φ and ψ can be evaluated in g. In addition, since g has nilpotence

class ≤ p− 1, the conclusion of Lemma 2.3 implies that (2.5) holds.

Next we assume that G is a uniform pro-p-group. By abuse of notation, we de-

fine a “valuation” vp : Qp⊗Zp
g −→ Z∪{∞} by vp(x) = sup

{
r ∈ Z : p−rx ∈ g

}
.

It is well-known that a series
∑∞
n=1 xn in g converges if and only if vp(xn)→∞

as n→∞.

Let us consider the case p = 3. Put H(x, y) = CH(x, y) ∈ Q〈〈x, y〉〉. It

follows from (2.6) that v3(H2) ≥ 0 and v3(Hn) ≥ −n−1
2 for all n ≥ 3. Since

− 6n−10
7 ≤ −n−1

2 for all n ≥ 3, we see that H satisfies the assumption of Lemma

2.4 with K = Q. Let φ, ψ denote the formal Lie series satisfying the conclusion

of the lemma. Since g is uniform, we see that for all x, y ∈ g and all n ≥ 1, we

have

v3(φn(x, y)) ≥ v3(φn) + n− 1 ≥ n− 1− 6n− 4

7
=
n− 3

7
> −1.

Therefore v3(φn(x, y)) ≥ 0, which means that φn(x, y) can be evaluated in g

for all n ≥ 1, and, in addition, v3(φn(x, y)) → ∞ as n → ∞ (independently of

x, y), which implies that the series φ(x, y) converges uniformly in g for x, y ∈
g. Similarly, the series ψ(x, y) can be evaluated term-by-term and converges

uniformly for all x, y ∈ g.

Finally, we consider the case p ≥ 5. Here an additional small trick is needed.

Put K = E = Qp(
√
p) and H(x, y) = 1/

√
p · CH(

√
px,
√
py) ∈ K〈〈x, y〉〉. Then

(2.6) implies that vp(Hn) = n/2+vp(CHn)−1/2 ≥ 0 for all n ≥ 1, and we have

H1(x, y) = x + y, which shows that Lemma 2.3 applies to H(x, y). Changing

notation again, we let φ′(x, y), ψ′(x, y) be the formal Lie series satisfying the
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conclusion of the lemma. Thus

1√
p

log
(
exp(
√
px) exp(

√
py)

)
= eadφ

′(x,y)(x) + eadψ
′(x,y)(y),

which after a change of variables z =
√
px, w =

√
py can be rewritten as

log
(
exp(z) exp(w)

)
= eadφ(z,w)(z) + eadψ(z,w)(w),

where we have put φ(z, w) = φ′
(
z/
√
p, w/

√
p
)

and ψ(z, w) = ψ′( z√
p ,

w√
p

)
. The

problem is that, a priori, the coefficients of φ and ψ lie inK = Qp(
√
p). However,

this is easy to fix as follows. Let us introduce a Z/2Z-grading on K〈〈x, y〉〉 by

assigning degree 0 to every element of Qp, and assigning degree 1 to x, y and
√
p. With this convention, it is clear that H(x, y) is purely odd (i.e., each

Hn(x, y) is odd). By looking at the proof of Lemma 2.3, it is easy to see that

the formal Lie series φ′ and ψ′ can be chosen to be purely even. This implies

that φ(z, w) and ψ(z, w) have coefficients in Qp.

The rest of the proof is the same as before. For all z, w ∈ g and all n ≥ 1, we

have

vp(φn(z, w)) ≥ vp(φn) + (n− 1) = vp(φ
′
n)− n

2
+ (n− 1)

≥ −n− 1

p− 1
− n

2
+ n− 1 ≥ n− 3

4
> −1,

where we have used2 the assumption p ≥ 5. Thus φ(z, w) can be evaluated

term-by-term in g and converges uniformly for all z, w ∈ g, and similarly for

ψ(z, w).

Theorem 2.6: Assume that p ≥ 3, let G be either a p-group of nilpotence class

< p or a uniform pro-p-group, and let g = Lie(G). Then there exists a bijection

Ω ←→ χΩ between G-orbits Ω ⊂ g∗ and characters of representations ρ ∈ Ĝ
such that Kirillov’s character formula holds:

(2.7) χΩ(ex) = |Ω|−1/2 ·
∑

f∈Ω

f(x) for all x ∈ g.

Proof. We will show that hypothesis (ii) of Theorem 1.1 holds for exp : g −→ G.

Let φ(x, y) and ψ(x, y) be the formal Lie series satisfying the conclusion of

Proposition 2.5. Then we obtain a continuous map of g × g to itself given

by (x, y) 7−→ (x̃, ỹ) =
(
eadφ(x,y)(x), eadψ(x,y)(y)

)
. (This is a slight abuse of

notation since x̃ depends on both x and y, and so does ỹ.) This map satisfies the

2 Note that this argument would fail if p = 3: this is why we need Lemma 2.4.
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properties mentioned in §2.2: on the one hand, x̃ and ỹ are conjugate to x and

y, respectively, and on the other hand, we have CH(x, y) = x̃+ ỹ for all x, y ∈ g.

We will now use this information to show that exp∗(f1∗f2) = exp∗(f1)∗exp∗(f2)

for all f1, f2 ∈ Fun(G)G.

Let us first assume that G is finite. Then, due to the G-invariance of f1, f2,

we have

(2.8)
(
exp∗(f1 ∗ f2)

)
(z)

def
=

1

|g|
∑

x,y∈g:x̃+ỹ=z

f1(e
x)f2(e

y) =
1

|g|
∑

x,y∈g:x̃+ỹ=z

f1(e
x̃)f2(e

ỹ)

for all z ∈ g. On the other hand,

(2.9)
(
exp∗(f1) ∗ exp∗(f2)

)
(z) =

1

|g|
∑

x,y∈g:x+y=z

f1(e
x)f2(e

y).

Thus it only remains to show that the map (x, y) 7−→ (x̃, ỹ) is a bijection of

g× g onto itself. However, this map is of the form

(x, y) 7−→
(
x+A(x, y), y +B(x, y)

)
,

where A and B are Lie polynomials whose homogeneous components have de-

grees ≥ 2. Using induction on the nilpotence class of g, it is easy to check that

this map is injective (for the induction step, let z be the center of g and note

that the map descends to a map of (g/z) × (g/z) to itself). Therefore, it is

bijective because g is finite.

If G is uniform the argument is similar. We only need to recall that by the

definition of Fun(G), there exists r ∈ N such that f1 and f2 are bi-invariant

with respect to the open subgroup Gp
r

= exp(prg). Moreover, exp descends to

a bijection of g/prg onto G/Gp
r

, and the map (x, y) 7−→ (x̃, ỹ) descends to a

bijection of (g/prg)× (g/prg) onto itself. Thus equations (2.8) and (2.9) remain

valid with g replaced by g/prg, and we see that exp∗(f1 ∗ f2) = exp∗(f1) ∗
exp∗(f2), as desired.

2.4. Uniform pro-2-groups. In this subsection we assume that p = 2, fix a

uniform pro-2-group G, and put g = Lie(G). As we have already mentioned,

the conclusion of Theorem 2.6 may fail in this case; indeed, even for an orbit

Ω ⊂ g∗ of size 1 formula (2.7) may fail to define an irreducible character of

G (cf. [JZ06]). In view of Theorem 1.1, this means that the pullback map

exp∗ : Fun(G)G −→ Fun(g∗)G may not commute with convolution. However,

we do have the following weaker positive result.
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Proposition 2.7: (a) Assume that [g, g] ⊆ 8 · g. Given f1, f2 ∈ Fun(G)G, we

have exp∗(f1∗f2) = exp∗(f1)∗exp∗(f2) provided either f1 or f2 is supported

on G2.

(b) In general, we have exp∗(f1 ∗ f2) = exp∗(f1) ∗ exp∗(f2) for all f1, f2 ∈
Fun(G2)G.

Proof. (a) The argument is rather similar to the one used in the previous sub-

section. Consider the formal Lie series H(x, y) = 1/2 · CH(2x, 2y). We have

H1(x, y) = x + y, and it follows from (2.6) that v2(Hn) ≥ 0 for all n ≥ 1.

Thus we can apply Lemma 2.3 with K = Q, and it yields formal Lie series

φ′(x, y), ψ′(x, y) satisfying

1

2
· log

(
exp(2x) exp(2y)

)
= eadφ

′(x,y)(x) + eadψ(x′,y′)(y).

We make the change of variables z = 2x, w = 2y and rewrite the last equation

as

log
(
exp(z) exp(w)

)
= eadφ(z,w)(z) + eadψ(z,w)(w),

where φ(z, w) = φ′
(
z
2 ,

w
2

)
and ψ(z, w) = ψ′( z

2 ,
w
2

)
. Now if z, w ∈ g, then for all

n ≥ 1,

v2(φn(z, w)) ≥ v2(φn) + 3(n− 1) = v2(φ
′
n)− n+ 3(n− 1)

≥ −(n− 1)− n+ 3(n− 1) = n− 2.
(2.10)

Here we have used the assumption [g, g] ⊆ 8 · g. Similarly, v2(ψn(z, w)) ≥ n− 2

for all n ≥ 1. This means that the series
∑
n≥2 φn(z, w) and

∑
n≥2 ψn(z, w) can

be evaluated term-by-term and converge uniformly for z, w ∈ g. Unfortunately,

we cannot make sure that both φ1(z, w) and ψ1(z, w) are defined in g, because

by definition we must have [φ1(z, w), z] + [ψ1(z, w), w] = 1
2 [z, w]. However, in

view of the inductive construction of the series φ′ and ψ′ used in the proof of

Lemma 2.3, we may assume that, say, φ1(z, w) = 0 and ψ1(z, w) = z/2. This

implies that φ(z, w) is defined and converges uniformly in g for all z, w ∈ g,

while ψ(z, w) is defined and converges uniformly in g for z ∈ 2g and w ∈ g.

The rest of the proof is as before. Put (x̃, ỹ) =
(
eadφ(x,y)(x), eadψ(x,y)(y)

)
.

Then (x, y) 7−→ (x̃, ỹ) is a map from (2g) × g to itself, and the argument used

in the proof of Theorem 2.6 implies that exp∗(f1 ∗ f2) = exp∗(f1) ∗ exp∗(f2) if

f1, f2 ∈ Fun(G)G and f1 is supported on G2. Since convolution of G-invariant

functions is commutative, the same formula holds if instead f2 is supported on

G2, completing the proof of (a).
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The proof of (b) is almost identical, except that (2.10) has to be replaced by

the following estimate, which is valid whenever [g, g] ⊆ 4g and z, w ∈ 2g:

v2(φn(z, w)) ≥ v2(φn) + 2(n− 1) + n = v2(φ
′
n)− n+ 2(n− 1) + n

≥ −(n− 1) + 2(n− 1) = n− 1 ≥ 0.

This means that φ(z, w), and similarly ψ(z, w), can be evaluated in g term-by-

term for all z, w ∈ 2g, and converges uniformly for these values of z, w.

We can now prove a version of the orbit method for uniform pro-2-groups

which is weaker than Theorem 2.6, but suffices for some applications (see Section

3).

Theorem 2.8: Let G be a uniform pro-2-group and g = Lie(G). For every

G-orbit Ω ⊂ (2g)∗, let e′Ω ∈ Fun(2g)G denote the inverse Fourier transform of

the characteristic function of Ω, put eΩ = log∗(e′Ω) ∈ Fun(G2)G, and define

ĜΩ ⊂ Ĝ to be the collection of those ρ ∈ Ĝ on which eΩ acts nontrivially3.

Then the following statements hold:

(a) each ĜΩ is finite, and Ĝ is the disjoint union of the subsets ĜΩ;

(b) if ρ ∈ ĜΩ and χρ is its character, then χρ
∣∣
G2

is a multiple of eΩ.

Proof. We use a modification of the argument that appeared in the proof of

Theorem 1.1. By construction, e′Ω is an indecomposable idempotent in the

algebra Fun(2g)G (with respect to the convolution defined using addition in

g), and Proposition 2.7(b) implies that eΩ is an indecomposable idempotent in

Fun(G2)G. Now we can think of Fun(G2)G as a subalgebra of Fun(G2)G
2

in

the obvious way, as well as a subalgebra of Fun(G)G using extension by zero.

Therefore, we can write

eΩ =

m∑

i=1

ei =

n∑

j=1

fj,

where the ei’s are indecomposable idempotents in Fun(G2)G
2

and the fj’s

are indecomposable idempotents in Fun(G)G. By the proof of Theorem 1.1,

each ei (respectively, fj) corresponds to some πi ∈ Ĝ2 (respectively, ρj ∈
Ĝ) whose character is a multiple of ei (respectively, fj). It is clear that if

ρ ∈ Ĝ, then ρ(eΩ) 6= 0 if and only if ρ ∼= ρj for some j, which implies that

ĜΩ = {ρ1, ρ2, . . . , ρn} is finite, proving the first half of (a).

3 This means that the linear operator ρ(eΩ) :=
∫

G
eΩ(g)ρ(g)dµG(g) is non-zero.
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Next, let χi ∈ Fun(G)G be the character of the induced representation

ηi := IndGG2 πi. Since G2 is normal in G, it follows that χi is supported on

G2, so that we can think of it as an element of Fun(G2)G, and, moreover, χi is

a positive integral multiple of the sum of elements in the orbit of ei under the

G-conjugation action. In particular, χi ∗ eΩ 6= 0, and Therefore, χ ∗ eΩ = λi · eΩ
for some λi ∈ C×, because eΩ is a indecomposable idempotent in Fun(G2)G.

Hence, we must have χi∗fj = λi ·fj for every j. Therefore, the ρj’s are precisely

the irreducible constituents of ηi. Now the Frobenius reciprocity implies that

for each 1 ≤ j ≤ n, the πi’s are precisely the irreducible constituents of ρj
∣∣
G2

,

which proves part (b).

Finally, to finish the proof of (a), let ρ ∈ Ĝ be arbitrary, and let

f ∈ Fun(G)G denote the corresponding indecomposable idempotent. There

exists a normal open subgroup K ⊂ G such that K ⊆ G2 and f is

bi-invariant with respect to K. Therefore, f is the pullback of an indecom-

posable idempotent f of Fun(G/K)G/K . However, the natural inclusion

Fun(G2/K)G/K →֒ Fun(G/K)G/K is a homomorphism of unital algebras,

which implies that f is a summand of an indecomposable idempotent e of

Fun(G2/K)G/K . Let e ∈ Fun(G2)G be the pullback of e; it follows from

Proposition 2.7(b) that e = eΩ for some G-orbit Ω ⊂ (2g)∗, and the proof

is complete.

2.5. Concluding remarks. The orbit method for uniform pro-p-groups was

first studied by Roger Howe [Ho77]; he used the classical approach based on

the notion of a polarization. However, he did not treat the case p = 2, and his

results for p ≥ 3 are weaker than our Theorem 2.6 in that he has to impose

an additional requirement on g: namely, the Lie algebra g̃ which has g as the

underlying Zp-module and has the Lie bracket defined by [x, y]g̃ = 1/p · [x, y]g
must be pro-nilpotent (equivalently, g̃/(p · g̃) must be a nilpotent Lie algebra

over Fp). Thus, for example, Howe’s result does not apply to groups such as

the kernel of the reduction modulo p homomorphism GLn(Zp) −→ GLn(Fp)

for any p ≥ 3, whereas our results do apply to them.

The problem with the classical approach is that not every polarization of g

corresponds to a subgroup of G, and Howe imposed his assumption precisely

to deal with it. However, Andrei Jaikin-Zapirain showed in [JZ06] that Howe’s

assumption can be removed by proving the existence of polarizations satisfying

some stronger conditions which allow the classical method to be used. His
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Theorem 2.9 is equivalent to our Theorem 2.6. Moreover, he also obtained a

result in the case p = 2 (Theorem 2.12 in op. cit.) which is stronger than

our Theorem 2.8. On the other hand, our result is already sufficient for some

applications, as we demonstrate in the next section.

3. A p-adic analogue of Brown’s theorem

3.1. The setup. We warn the reader that our notation here will differ from

that of the first two sections. Namely, throughout the rest of the paper we let

G be a p-adic nilpotent Lie group, and g its Lie algebra, which is a finite

dimensional nilpotent Lie algebra over Qp. For our purposes one does not need

to know the general definition of a p-adic Lie group; it suffices to think of G as

the underlying topological space of g (where the topology on g is induced by the

standard topology on Qp) equipped with the operation given by the Campbell–

Hausdorff series CH(x, y). (Here there is no question of CH being well-defined

or convergent, because g is a Lie algebra over a field of characteristic zero,

and is nilpotent.) Thus G is a locally compact totally disconnected topological

group. Recall also that a choice of a non-trivial continuous additive character

ψ : Qp → C× allows one to identify g∗ with HomQp
(g,Qp). The set of coadjoint

orbits g∗/G is equipped with the quotient of the natural topology of g∗.

A complex representation (π, V ) of G, where V is a vector space over C and

π : G −→ GL(V ) is a homomorphism, is said to be algebraic (or smooth) if

for each v ∈ V the stabilizer Gv = {g ∈ G : π(g)v = v} is an open subgroup

of G. Note that V need not have finite dimension in this definition, and, in

fact, most irreducible algebraic representations of G are infinite-dimensional.

The isomorphism class of (π, V ) will be denoted by [(π, V )], and we write Ĝ for

the set of isomorphism classes of irreducible algebraic representations of G. It

is equipped with the Fell topology, whose definition is recalled in §3.2 below.

Calvin Moore proved [Mo65] that there is a natural bijection between g∗/G and

Ĝ (see the introduction). The main result of this section is

Theorem 3.1: The orbit method bijection g∗/G −→ Ĝ is a homeomorphism.

Note that the continuity of this bijection is not difficult to check using an

argument similar to the one for real Lie groups (but see also §3.5). On the

other hand, it is rather non-trivial to prove that the bijection is open, and
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our argument is based on a fact (Lemma 3.2) which does not have an obvious

analogue over R.

3.2. Fell topology. We recall the definition given in [GK92]. For an

irreducible algebraic representation (π, V ) of G, choose n ∈ N, vectors

v1, . . . , vn ∈ V , linear functionals ξ1, . . . , ξn ∈ V ∗, a compact set B ⊂ G, and a

real number ǫ > 0, and define

U (π, V,B, vj , ξj , ǫ) ⊆ Ĝ

to be the set of isomorphism classes [(W,ρ)] ∈ Ĝ such that there exist

w1, . . . , wn ∈ W and η1, . . . , ηn ∈W ∗ with the property

∣∣∣
〈
ξi, π(g)vi

〉
−

〈
ηi, ρ(g)wi

〉∣∣∣ < ǫ for all g ∈ B, 1 ≤ i ≤ n.

Sets of the form U (π, V,B, vj , ξj , ǫ) are defined to be a basis of neighbourhoods

of the point [(π, V )] ∈ Ĝ, which uniquely determines a topology on Ĝ, called

the Fell topology. To understand it, we begin with the following

Lemma 3.2: If g is a finite dimensional nilpotent Lie algebra over Qp, then

g can be written as the union of an increasing sequence of open uniform Lie

subalgebras:

(3.1) k1 ⊆ k2 ⊆ k3 ⊆ · · · ⊆ g, g =
⋃

j≥1

kj .

Proof. Let x1, . . . , xN be a basis of g over Qp. For every j ∈ N, consider the set

of all elements of g of the form

[y1, [y2, [y3, [· · · [yt−1, yt] · · · ]]]],

where t ≥ 1 is arbitrary and each yi is of the form p−jxk for some 1 ≤ k ≤ N .

Since g is nilpotent, only finitely many of these iterated commutators are non-

zero, and hence their Zp-span, call it k′j , is a free Zp-submodule of g of finite rank.

Moreover, k′j is closed under the Lie bracket by definition. By construction,

k′j ⊆ k′j+1 for all j ≥ 1, and g = k′1 ∪ k′2 ∪ · · · . Let kj = p · k′j (respectively,

kj = 4 · k′j if p = 2); this is clearly a uniform Lie algebra, and since g is a vector

space over Qp, it follows that (3.1) holds. Finally, each kj is open because

p1−jxm ∈ kj for all 1 ≤ m ≤ N .
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3.3. Some notation. An obvious consequence of Lemma 3.2 is that one ob-

tains the same topology on Ĝ by restricting the compact set B in the definition

of the Fell topology to be an arbitrary open uniform subgroup K of G. Now ei-

ther Theorem 2.6 or Theorem 2.8 applies to K. In order to make the argument

below independent of p, let us define α = 2 if p = 2 and α = 1 if p ≥ 3. Put

k = Lie(K) ⊂ g, and let Ω0 ⊂ (αk)∗ be a K-orbit. If p = 2, then a finite subset

K̂Ω0
⊂ K̂ was defined in Theorem 2.8. For p ≥ 3, we let K̂Ω0

⊂ K̂ to be the

singleton subset consisting of the irreducible representation of K corresponding

to Ω0 ⊂ k∗. In either of the two cases, we define eΩ0
∈ Fun(Kα)K be the pull-

back via log : Kα −→ αk of the inverse Fourier transform of the characteristic

function of Ω0, and Theorems 2.6 and 2.8 imply that if ρ ∈ K̂Ω0
and χρ is its

character, then χρ
∣∣
Kα is a multiple eΩ0

.

As the last piece of notation, if π is any complex continuous representation of

K, we will denote by supp(π) ⊆ K̂ the collection of all irreducible constituents

of π.

3.4. Proof of the difficult part of Theorem 3.1. Given f ∈ g∗, we will

prove that the orbit method bijection g∗/G
≃−→ Ĝ is open at the point Ωf ∈

g∗/G, where Ωf denotes the G-orbit of f . Consider an open neighbourhood of

f in g∗. By shrinking it if necessary, we may assume, thanks to Lemma 3.2,

that it is of the form

V (f,K) =
{
f ′ ∈ g∗ : f ′∣∣

αk
= f

∣∣
αk

}
,

where K ⊂ G is an open uniform subgroup with Lie algebra k and α is as in

§3.3. We assume from now on that K is fixed. It suffices to check that the

image of V (f,K) under the orbit method map g∗ −→ Ĝ contains an open

neighbourhood of [(πf , Vf )] with respect to the Fell topology, where (πf , Vf )

denotes an irreducible algebraic representation of G corresponding to Ωf . The

proof rests on the following

Proposition 3.3: Let Ω ⊂ g∗ be a G-orbit, let Ω0 ⊂ (αk)∗ be a K-orbit, and

let π denote the irreducible algebraic representation of G corresponding to Ω.

Then supp(π
∣∣
K

) ∩ K̂Ω0
6= ∅ if and only if Ω0 is contained in the image of Ω

under the restriction map res : g∗ → (αk)∗.
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Proof. We use [GK92], §1.2. Recall that the character c(π) of π is not a function

on G, but rather a distribution, defined by

(3.2) 〈c(π), t〉 = tr

[∫

G

t(g)π(g)dg

]
, t ∈ C∞

0 (G),

where C∞
0 (G) is the space of locally constant functions G −→ C with compact

support, and dg denotes a fixed Haar measure on G. (The complex conjugation

appears in the formula above for consistency with our orbit method for uniform

pro-p-groups.) Moreover, Kirillov’s character formula in this context implies

that exp∗(c(π)) is the inverse Fourier transform of a suitably normalized G-

invariant measure on g∗ supported on Ω. Let e0 = eΩ0
∈ Fun(Kα)K ⊂ C∞

0 (G)

with the notation of §3.3. By definition, supp(π
∣∣
K

)∩ K̂Ω0
6= ∅ if and only if e0

acts non-trivially on π
∣∣
K

, which, in turn, is equivalent to 〈c(π), e0〉 6= 0 because

e0 is an idempotent in Fun(K). Since the Fourier transform is an isometry,

we see that 〈c(π), e0〉 6= 0 if and only if res−1(Ω0) ∩ Ω 6= ∅, which proves the

proposition (since res(Ω) is obviously K-stable).

Using the notation preceding the statement of the proposition, let f0 = f
∣∣
αk

,

let Ω0 ⊂ (αk)∗ be the K-orbit of f0, and let e0 = eΩ0
. Then Ω0 ⊆ res(Ω), so by

(the proof of) Proposition 3.3, we have πf (e0) 6= 0. In particular, there exist

v ∈ Vf and ξ ∈ V ∗
f such that 〈ξ, πf (e0)v〉 = 1. Define ǫ =

(∫
K |e0(k)|dµK(k)

)−1
,

where µK is the standard Haar measure on K of total mass 1. It is clear that

the following result implies that the orbit method bijection g∗/G −→ Ĝ is open.

Proposition 3.4: The open neighbourhood U (πf , Vf ,K, v, ξ, ǫ) of [(πf , Vf )]

in Ĝ is contained in the image of V (f,K) under the map g∗ −→ Ĝ.

Proof. Suppose that [(ρ,W )] ∈ U (πf , Vf ,K, v, ξ, ǫ). By definition, there exist

w ∈ W and η ∈ W ∗ such that
∣∣〈η, ρ(g)w〉 − 〈ξ, πf (g)v〉

∣∣ < ǫ for all g ∈ K.

Multiplying by the function |e0(g)|, integrating with respect to µK and using

the definition of ǫ, we obtain
∣∣〈η, ρ(e0)w〉 − 〈ξ, πf (e0)v〉

∣∣ < 1. By construction,

this forces 〈η, ρ(e0)w〉 6= 0, whence ρ(e0) 6= 0, i.e., supp(ρ
∣∣
K

) ∩ K̂Ω0
6= ∅.

By Proposition 3.3, if Ω′ ⊂ g∗ is the G-orbit corresponding to ρ, then res(Ω′)

contains f0, i.e., Ω′ meets V (f,K).

3.5. Proof of continuity (sketch). We conclude by briefly explaining how

Lemma 3.2 can be used to prove that the orbit method bijection g∗/G −→ Ĝ

is continuous. We use the notation of §3.2. Fix (π, V ) ∈ Ĝ, let Ω ⊂ g∗ be
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the corresponding G-orbit, and consider a “standard” open neighbourhood of

[(π, V )] of the form U = U (π, V,K, vj , ξj , ǫ), where K ⊂ G is a uniform pro-

p-subgroup. In view of Lemma 3.2 it suffices to show that the inverse image

of U in g∗/G contains a neighbourhood of Ω. To this end, let W ⊆ V be a

finite dimensional K-invariant subspace containing all the vj ’s, let ϑ denote the

(possibly reducible) representation of K afforded by W , and let χ1, . . . , χr ∈
Fun(K)K ⊂ C∞

0 (G) denote the characters of the irreducible constituents of ϑ.

It is clear that if (π′, V ′) ∈ Ĝ is such that π′
∣∣
K

contains a K-subrepresentation

isomorphic to ϑ, then [(π′, V ′)] ∈ U .

Now fix a Haar measure dg on G. For every G-orbit Ω′ ⊂ g∗, let πΩ′ be the

corresponding representation of G, let c(πΩ′ ) be the character of πΩ′ defined

by (3.2), and let µΩ′ denote the G-invariant measure on g∗ supported on Ω′

whose inverse Fourier transform is equal to exp∗(c(πΩ′ )). Furthermore, let k =

Lie(K) ⊂ g, let res : g∗ −→ k∗ denote the restriction map, and let νi : k∗ → C

denote the Fourier transform of exp∗(χi) ∈ Fun(k)K . It is not hard to check

that as Ω′ ∈ g∗/G varies, the conditions
〈
νi, res∗ µΩ′

〉
≥

〈
νi, res∗ µΩ

〉
, 1 ≤ i ≤ r,

define an open subset V ⊆ g∗/G. If Ω′ ∈ V , then applying the inverse Fourier

transform and Kirillov’s character formula for the group G, we see that the

multiplicity of each χi in πΩ′

∣∣
K

is at least its multiplicity in π
∣∣
K

, whence ϑ is

isomorphic to a subrepresentation of πΩ′

∣∣
K

. By the previous paragraph, V is

contained in the inverse image of U in g∗/G, completing the proof.
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[DDMS] J. D. Dixon, M. P. F. du Sautoy, A. Mann and D. Segal, Analytic pro-p-groups, 2nd

ed. , Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University

Press, Cambridge, 1999.

[DB06] V. Drinfeld and M. Boyarchenko, A motivated introduction to character sheaves and

the orbit method for unipotent groups in positive characteristic, e-print, September

2006, math.RT/0609769

[GK92] S. Gelfand and D. Kazhdan, Extensions of representations of p-adic nilpotent groups,

Advances in Mathematics 94 (1992), 240–255.

[Ho77] R. E. Howe, Kirillov theory for compact p-adic groups, Pacific Journal of Mathe-

matics 73 (1977), 365–381.

[JZ06] A. Jaikin-Zapirain, Zeta-functions of representations of compact p-adic analytic

groups, Journal of the American mathematical Society 19 (2006), 91–118; avail-

able online from the author’s homepage.



Vol. 165, 2008 ORBIT METHOD AND BROWN’S THEOREM 91

[Ka77] D. Kazhdan, Proof of Springer’s hypothesis, Israel Journal of Mathematics 28

(1977), 272–286.

[Khu98] E. I. Khukhro, p-Automorphisms of Finite p-Groups, London Mathematical Society

Lecture Note Series 246, Cambridge University Press, Cambridge, 1998.

[Ki62] A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Matematich-

eskikh Nauk 17 (1962), 57–110.

[Mo65] C. C. Moore, Decomposition of unitary representations defined by discrete subgroups

of nilpotent groups, Annals of Mathematics (2) 82 (1965), 146–182.


